Algebraic stability of zigzag persistence modules
نویسندگان
چکیده
منابع مشابه
Algebraic Stability of Zigzag Persistence Modules
The stability theorem for persistent homology is a central result in topological data analysis. While the original formulation of the result concerns the persistence barcodes of R-valued functions, the result was later cast in a more general algebraic form, in the language of persistence modules and interleavings. In this paper, we establish an analogue of this algebraic stability theorem for z...
متن کاملZigzag Persistence
We describe a new methodology for studying persistence of topological features across a family of spaces or point-cloud data sets, called zigzag persistence. Building on classical results about quiver representations, zigzag persistence generalises the highly successful theory of persistent homology and addresses several situations which are not covered by that theory. In this paper we develop ...
متن کاملThe Structure and Stability of Persistence Modules
We give a self-contained treatment of the theory of persistence modules indexed over the real line. We give new proofs of the standard results. Persistence diagrams are constructed using measure theory. Linear algebra lemmas are simplified using a new notation for calculations on quiver representations. We show that the stringent finiteness conditions required by traditional methods are not nec...
متن کاملStability of higher-dimensional interval decomposable persistence modules
The algebraic stability theorem for pointwise finite dimensional (p.f.d.) R-persistence modules is a central result in the theory of stability for persistence modules. We present a stability theorem for n-dimensional rectangle decomposable p.f.d. persistence modules up to a constant (2n− 1) that is a generalization of the algebraic stability theorem. We give an example to show that the bound ca...
متن کاملInduced matchings and the algebraic stability of persistence barcodes
We define a simple, explicit map sending a morphism f : M → N of pointwise finite dimensional persistence modules to a matching between the barcodes of M and N . Our main result is that, in a precise sense, the quality of this matching is tightly controlled by the lengths of the longest intervals in the barcodes of ker f and coker f . As an immediate corollary, we obtain a new proof of the alge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic & Geometric Topology
سال: 2018
ISSN: 1472-2739,1472-2747
DOI: 10.2140/agt.2018.18.3133